

SN	Question	A	В	C	D	Ans
1	Using Castigliano's second theorem, the reaction at roller support A for the frame shown in Figure.1 is	3.427 KN	5.602 KN	4.234 KN	2.437 KN	D
2	Taking V _C as a redundant reaction, the B M expression	$10x - (60 - 4V_C)$	$V_C x$	V _c x -20 (x - 2)	$10x - 10(x - 2) - (60 - 4V_C)$	A
3	A frame ABC is loaded and supported as shown in Fig.2 Taking V_C as a redundant reaction, the B M expression for segment AD as a A origin is	$10x + (60 - 4V_C)$	$V_C x$	$V_{c}x - 20(x - 2)$	None of the above	D
4	A frame ABC is loaded and supported as shown in Fig3. Taking V_C as a redundant reaction, the B M expression for segment AB as a A origin is	$50x - 10x^2/2 - $ $(192.5 - 3V_C)$	$V_C x - 15x^2/2$	Both A and B	None of the above	A
5	A frame ABC is loaded and supported as shown in Fig3. Taking V_C as a redundant reaction, the B M expression for segment CB as a C origin is	$50x - 10x^2/2 - $ $(192.5 - 3V_C)$	$V_{\rm C} x - 15x^2/2$	Both A and B	None of the above	В
6	A frame ABC is loaded and supported as shown in Fig4. Taking V_C as a redundant reaction, the B M expression for segment AD as a A origin is	$30x - (290 + 4V_C)$	$V_C x - 25x^2/2$	$30x - 30(x - 3) - (290 - 4V_C)$	None of the above	D
7	A frame ABC is loaded and supported as shown in Fig5. Taking V_C as a redundant reaction, the B M expression for segment CB as a C origin is	$60x - 15x^2/2 - (180 - 3V_C)$	$V_C x$	$V_C x + 40(x - 1.5)$	None of the above	D
8	A frame ABC is loaded and supported as shown in Fig5. Taking $V_{\rm C}$ as a redundant reaction, the vertical reaction at A is	180 - 3V _C	60	40 - V _C	None of the above	С

	Fig I				F1g 4	
9	A continuous beam ABC consist span AB of 5 m loaded with uniformly distributed load of 10 kN/m and span BC of 5 m loaded with central point load of 30 kN. If end supports are simple and V_B is the redundant, the correct B M expression for segment AB as a origin A is	$(45 - 0.5V_B)x - 10x^2/2$	$(35 - 0.5V_B)x$	$(35 - 0.5V_B)x - 30(x - 2.5)$	None of the above	A
10	A continuous beam ABC consist span AB of 5 m loaded with uniformly distributed load of 10 kN/m and span BC of 5 m loaded with central point load of 30 kN at point D. If end supports are simple and V _B is the redundant, the correct B M expression for segment CD as a origin C is	$(45 - 0.5V_B)x - 10x^2/2$	$(35 - 0.5V_B)x$	$(35 - 0.5V_B)x - 30(x - 2.5)$	None of the above	В
11	A continuous beam ABC consist span AB of 5 m loaded with uniformly distributed load of 10 kN/m and span BC of 5 m loaded with central point load of 30 kN at point D. If end supports are simple and V_B is the redundant, the correct B M expression for segment CB as a origin C is	$(45 - 0.5V_B)x - 10x^2/2$	$(35 - 0.5V_B)x$	$(35 - 0.5V_B)x - 30(x - 2.5)$	None of the above	С
12	A continuous beam ABC consist span AB of 5 m loaded with uniformly distributed load of 10 kN/m and span BC of 5 m loaded with central point load of 30 kN. If end supports are simple and V_B is the redundant, the reaction at support A is	45	$(35 - 0.5V_B)$	$(45 + 0.5V_B)$	None of the above	D

13	A continuous beam ABC consist span AB of 4 m loaded with uniformly distributed load of 20 kN/m and span BC of 4 m loaded with uniformly distributed load of 10 kN/m. If end supports are simple and V_B is the redundant, the correct B M expression for segment CB as a origin C is	$(50 - 0.5V_B)x - 5x^2$	$(70 - 0.5V_B)x - 10x^2$	Both A and B	None of the above	A
14	A continuous beam ABC consist span AB of 6 m loaded with central point load of 40 kN at D and span BC of 4 m loaded with central point load of 60 kN at E. If end supports are simple and V_B is the redundant, the correct B M expression for segment AD as a origin A is	$(40 - 0.5V_B)x - 40(x - 3)$	$(60 - 0.5V_B)x - 60(x - 2)$	$(40 - 0.5V_B)x$	$(60 - 0.5V_B)x$	С
15	A continuous beam ABC consist span AB of 4 m loaded with uniformly distributed load of 10 kN/m and span BC of 4 m loaded with central clockwise moment of 50 kNm at point D. If end supports are simple and V_B is the redundant, the expression of B M for segment AB as origin A is	$(23.75 + 0.5 \text{ V}_{\text{B}})x - 10x^2/2$	$(16.25 - 0.5 \text{ V}_{\text{B}})x$	$(16.25 - 0.5 V_B)x - 50$	None of the above	D
16	A continuous beam ABC consist span AB of 4 m loaded with uniformly distributed load of 10 kN/m and span BC of 4 m loaded with central clockwise moment of 50 kNm at point D. If end supports are simple and V_B is the redundant, the expression of B M for segment CD as origin C is	$(23.75 - 0.5 \text{ V}_{\text{B}})x - 10x^2/2$	$(16.25 - 0.5 V_B)x$	$(16.25 - 0.5 V_B)x - 50$	None of the above	В
17	A continuous beam ABC consist span AB of 3 m loaded central anticlockwise moment of 100 kNm at D and span BC of 3 m loaded with central clockwise moment of 40 kNm at point E. If end supports are simple and V _B is the redundant, the expression of B M for segment AD as origin A is	$(10 + 0.5 V_B)x$	$-(10+0.5 V_B)x$	Both A and B	None of the above	D
18	The prop reaction of a propped beam with central point load W is	0.3125W	5/8W	3/10W	15/16W	A

19	A cantilever of length L carries a point load W at its free end. It is propped at of distance of L/4 from the free end, the prop reaction is	W	1.5 W	1.25 W	None of the above	В
20	The prop reaction of a propped beam carrying uniformly distributed load is	3WL/8	WL/8	WL/3	None of them	A
21	The reaction at fixed end of a propped beam carrying uniformly distributed load is	3WL/8	5WL/8	WL/3	None of the above	В
22	The moment at fixed end in a propped beam due to a couple Mo applied at prop end is	$3M_0/2$	$M_0/4$	$0.3M_{0}$	$0.5 \ \mathrm{M}_{\mathrm{0}}$	D
23	The moment at fixed end of a propped beam carrying uniformly distributed load is	$3WL^2/8$	5WL ² /8	$WL^2/8$	None of the above	С
24	The reaction at fixed end of a propped beam of span L with central point load W is	11/16W	5/8W	3/10W	None of the above	A
25	A propped cantilever of span 4 m loaded with central point load 20 kN, the reaction at propped end iskN.	4.25	13.75	6.25	None of the above	С
26	A propped cantilever of span 4 m loaded with central point load 20 kN, the reaction at fixed end is kN.	14.75	13.75	6.25	None of the above	В
27	A propped cantilever of span 3 m loaded with uniformly distributed load of 10 kN/m, the reaction at propped end is kN.	10.25	18.75	3.75	None of the above	D
28	A propped cantilever of span 3 m loaded with uniformly distributed load of 10 kN/m, the moment at fixed end is	33.75	18.75	3.75	None of the above	D
29	A fixed beam AB of span 7 m loaded with 80 kN at 2 m from A and 40 kN at 2 m from B, the fixed moment at A is kNm.	48.98	97.98	122.45	None of the above	D
30	A fixed beam AB of span 7 m loaded with 80 kN at 2 m from A and 40 kN at 2 m from B, the reaction at A is kN.	61.92	72.07	47.93	37.43	В

31	A fixed beam AB of span 9 m loaded with uniformly distributed load of 10 kN/m on whole span with a point load of 20 kN at 2 m from B, moment at A kNm.	91.7	47.52	64.48	None of the above	D
32	A fixed beam AB of span 9 m loaded with uniformly distributed load of 10 kN/m on whole span with a point load of 20 kN at 2 m from B, moment at B kNm.	74.41	91.7	47.52	64.48	В
33	A fixed beam AB of span 9 m loaded with uniformly distributed load of 10 kN/m on whole span with a point load of 20 kN at 2 m from B, reaction at A kN.	74.41	91.7	47.52	64.48	С
34	A fixed beam AB of span 6 m loaded with uniformly distributed load of 15 kN/m on whole span with central point load of 30 kN, the moment at A is kNm.	60	180	67.5	None of the above	С
35	A fixed beam AB of span 6 m loaded with uniformly distributed load of 15 kN/m on whole span with central point load of 30 kN, the moment at A is kN-m	60	180	90	None of the above	A
36	A fixed beam of 6 m span carries a point load of 90 kN at center, the bending moment at center is	195 kNm	105 kNm	165 kNm	None of the above	D
37	In continuous ABC, span AB of 4 m loaded with central point load of 80 kN and span BC of 6 m loaded with uniformly distributed load of 20 kN/m on whole span. The supports are simple, the moment at support BkNm.	60	78	0	None of the above	В
38	In continuous ABC, span AB of 4 m loaded with central point load of 80 kN and span BC of 6 m loaded with uniformly distributed load of 20 kN/m on whole span. The supports are simple, the moment at support AkNm.	60	78	90	None of the above	D

39	In continuous ABC, span AB of 4 m loaded with central point load of 80 kN and span BC of 6 m loaded with uniformly distributed load of 20 kN/m on whole span. The supports are simple, the moment at support CkNm.	60	78	90	None of the above	D
40	In continuous ABC, span AB of 4 m loaded with central point load of 80 kN and span BC of 6 m loaded with uniformly distributed load of 20 kN/m on whole span. The supports are simple, the area of B M due to 80 kN load is	160	480	320	None of the above	A
41	In continuous ABC, span AB of 4 m loaded with central point load of 80 kN and span BC of 6 m loaded with uniformly distributed load of 20 kN/m on whole span. The supports are simple, the area of B M due to 20 kN/m load is	360	480	320	None of the above	A
42	In continuous ABC, span AB of 4 m loaded with central point load of 80 kN and span BC of 6 m loaded with uniformly distributed load of 20 kN/m on whole span. The supports are simple, the a_1x_1 for span AB is	160	480	320	None of the above	С
43	In continuous ABC, span AB of 4 m loaded with central point load of 80 kN and span BC of 6 m loaded with uniformly distributed load of 20 kN/m on whole span. The supports are simple, the a_2x_2 for span BC is	1080	480	320	None of the above	A
44	In continuous ABC, span AB of 5 m loaded with central point load of 30 kN and span BC of 5 m loaded with central point load of 50 kN. The supports are simple, the moment at B is kNm.	62.5	37.5	Zero	None of the above	В

45	In continuous ABC, span AB of 4 m loaded with uniformly distributed load of 15 kN/m and span BC of 4 m loaded with uniformly distributed load of 18 kN/m. The supports are simple, the moment at B iskNm.	30	36	42	None of the above	D
46	In continuous ABC, span AB of 4 m loaded with uniformly distributed load of 10 kN/m and span BC of 4 m loaded central point load of 20 kN. The supports are simple, the bending moment at B is kNm.	20	35	Zero	None of the above	В
47	In continuous ABC, span AB of 4 m loaded with uniformly distributed load of 10 kN/m and span BC of 4 m loaded central point load of 20 kN. The supports are simple, the area of B M due to 10 kN/m is	53.33	40	Zero	None of the above	A
48	In continuous ABC, span AB of 4 m loaded with uniformly distributed load of 10 kN/m and span BC of 4 m loaded central point load of 20 kN. The supports are simple, the a_2x_2 for span BC is	106.67	85	100	None of the above	D
49	Redundant frames may be analyzed by	Castigliano's second theorem	Castigliano's first theorem	Funicular polygon	Area moment method	A
50	Castigliano's second theorem may be used to find reaction in a	Propped cantilever	Continuous beam	Fixed beam	All of the above	D
51	The beam whose one end fixed and other end is simply supported is known as	Fixed beam	Propped cantilever	Continuous beam	Compound beam	В
52	It is difficult to use the strain energy method for a structure	Degrees of freedom are less	Degrees of freedom are more	Degrees of redundancy are more	Degrees of redundancy are less	С
53	For a beam carrying an uniformly distributed load,the strain energy will be maximum in case of the beam is	Cantilever	Simply supported	Propped cantilever	Fixed at both end	A
54	A beam constrained from both rotation and translation by supports is called	Encased beam	Direction-fixed ends beam	Fixed beam	All of these	D

55	Castigliano's theorem fall under the category of	Displacement method	Equilibrium method	Force method	Stiffness method	С
56	Fixed end moment due to support settlement is	96ΕΙδ/L2	6ΕΙδ/L2	6ΕΙδ/L	None of the above	В
57	The edge view of the neutral surface of a deflected beam is known as	Elastic curve	Deflection curve	Both A and B	None of the above	С
58	Degree of indeterminacy of propped cantilever is	1	0	2	None of the above	A
59	Method of least work is also known as	Castigliano's first theorem	Castigliano's second theorem	First theorem of Moment area method	Second theorem of moment area method	В
60	Fixed end moment for a fixed beam AB of span L loaded with uniformly distributed load w	(wL2/10)	(wL2/12)	(wL2/08)	None of the above	В
61	Fixed end moment for a fixed beam AB of span L loaded with central point load is W	WL/8	WL/10	WL/4	None of the above	A
62	Fixed end moment at support A for a fixed beam AB of span L loaded with eccentric point load W at a from support A and b from support B is	Wa2b/L2	Wab2/L2	Wa2b2/L2	None of the above	В
63	Fixed end moment at support A for a fixed beam AB of span L loaded with eccentric point load W at a from support A and b from support B is	Wa2b/L2	Wab2/L	Wa2b2/L2	None of the above	D
64	Fixed end moment at support A for a fixed beam AB of span L loaded with clockwise moment M at a from support A and b from support B is	(2b - a)Ma/L2	(b - 2a)Mb/L2	(b - 2a)Mab/L2	None of the above	В
65	Fixed end moment at support B for a fixed beam AB of span L loaded with clockwise moment M at a from support A and b from support B is	(2b - a)Ma/L2	(b - 2a)Mb/L2	(b - 2a)Mab/L2	None of the above	A
66	While using three moment equation a fixed end of a continuous beam is replaced by an additional span of	Zero length	Infinite length	Zero moment of inertia	None of the above	A

67	The three moment equation is applicable only when	The beam is prismatic	There is no settlement of supports	There is no discontinuity such as hinges within the span	The spans are equal	С
68	The theorem of three moments express the condition of	Shear force	Support moments	Mid-span moments	None of the above	В
69	Maxwell-Betti reciprocal theorem is based on	Muller-Breslau principle	Principle of least work	Principle of superposition	None of the above	С
70	A simply supported beam is loaded with central point load W, the bending moment at the center is	WL/8	$WL^2/4$	WL/4	$WL^3/4$	С
71	In Clapeyron's theorem if both ends are simply supported the following statements is correct	Ends moments are taken zero	Imaginary span on one side is considered	Imaginary span is considered on both sides.	Ends moments is calculated by considered overhanging part as cantilever portion.	A
72	A simply supported beam fixed at both ends can be analysis by	Moment area method	Conjugate beam method	Three moment equation	None of the above	С
73	Continuous beam loaded with central point load W on each span, the free bending moment is	WL/4	WL/8	WL/10	None of the above	A
74	Continuous beam loaded with uniformly distributed load w on each span, the free bending moment is	$wL^2/4$	$wL^2/8$	$wL^2/10$	None of the above	В
75	Continuous beam loaded with uniformly distributed load w on each span, the free bending moment is	$wL^2/4$	$wL^2/6$	$wL^2/10$	None of the above	D
76	Two span continuous beam loaded with eccentric point load W act at a from left bending support and b from interior support, the free end moment is	Wa ² b/L	Wab/L	Wab ² /L	None of the above	В
77	Two span continuous beam loaded with central couple M on each span, the free end moment is	M/2	M	2M	None of the above	A
78	In two span continuous beam moment at supports is	Sagging	Hogging	Both A and B	None of the above	В
79	In analysis of two span continuous beam by strain energy method, the redundant force are	Fixed	Choice to solver	Both A and B	None of the above	В

81 In a continuous beam, if one of the support is sink then it 81 End moments Support moments Twisting moments Bending	80	In a continuous beam overhanging part act as a	Virtual part	Propped Cantilever	Imaginary part	None of the above	D
reflect on moments	81		End moments	Support moments	Twisting moments		В